Knee Joint Acoustic Emissions As A Non-invasive Biomarker Of Meniscal Tears

Daniel C. Whittingslow, PhD1,2; Hyeon-Ki Jeong3; Nicholas Bolus3; Jason Boyd3; Jennifer Lee Hunnicutt3; Regina Hash1,2; Omer T. Inan2; John W. Xerogeanes3

1Emory University School of Medicine School, 2 Georgia Institute of Technology, 3 Emory Orthopaedics and Spine Center, Emory University School of Medicine, Atlanta, GA

Overview

Opportunity: Knees are among the most commonly and most severely injured body parts and current diagnostic tools are expensive, inconvenient and limited to the clinic.

Hypothesis: Acoustical emissions from the joint when properly recorded and analyzed can provide in-depth, quantitative information regarding the underlying physiology of the joint.

Goal: Increase the understanding of the nature and potential applications of joint acoustic emission (AE) recording and analysis. AEs can be measured non-invasively, and if they contain physiologically relevant information could aid in the diagnosis, monitoring, and clinical-decision making of acute musculoskeletal injuries.

In this study, the objective is to determine if acoustic emissions can differentiate between an intact, partially torn, and fully torn lateral meniscus.

Experimental Setup

Studies with cadaver knee models. The knee is one of the most frequently injured body parts, and diagnosis relies principally on physical exam and imaging - this technique could one day serve a screening tool for triaging possible knee injuries prior to imaging studies.

Objectives

- To measure acoustic emissions from knee joints
- To differentiate between intact, partially torn, and fully torn lateral meniscus
- To develop a non-invasive biomarker for meniscal tears
- To validate the model in a clinical setting

Results

- The baseline, partial tear, and full tear groups were classified at an accuracy rate of 81.0%
- The sensitivity, specificity, and positive predictive value of the model were 77.6%, 93.8%, and 87.7% for classifying individual cycles of movement, respectively
- The baseline and sham stages were not statistically different
- The tear stages were statistically differentiated from the baseline and sham stages (p<0.0001)
- The partial and full tears' joint health scores were also statistically different (p<0.005)

Conclusion

Acoustic emissions generated by knee articulation can be non-invasively measured and interpreted to determine injury status and severity of injury in a cadaver knee model.

The long-term goal of this work is to create a non-invasive tool for quantifying joint health for screening, diagnostic, and longitudinal monitoring purposes.

This study shows for the first time that AE analysis can diagnose and grade lateral meniscus tears in a human cadaver model. The knee is one of the most frequently injured body parts, and diagnosis relies principally on physical exam and imaging - this technique could one day serve a screening tool for triaging possible knee injuries prior to imaging studies.

Future Work

These findings are now being tested in a clinical study on patients with acute knee injuries. So far, 12 healthy controls, 10 patients with meniscus tears, and 6 patients with ACL tears have been recorded. These recordings look promising, but results are pending further recruitment.

Further research should be performed to determine the specificity of these findings. An immediate next step is to perform this same analysis on other types of common knee injuries in a cadaver model.

Acknowledgements:

This material is based upon work supported in part by the Department of Defense Advanced Research Projects Agency (DARPA), Arlington, VA under Contract No. W911NF-14-C-0058, and by the National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering, Grant No. 1R01EB023808, as part of the NSF / NIH Smart and Connected Health Program.